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The hydrodynamic instability of a viscous incompressible flow with a free surface is 
studied both numerically and experimentally. While the free-surface flow is basically 
two-dimensional at low Reynolds numbers, a three-dimensional secondary flow 
pattern similar to the Taylor vorticies between two concentric cylinders appears at 
higher rotational speeds. The secondary flow has periodic velocity components in the 
axial direction and is characterized by a distinct spatially periodic variation in surface 
height similar to a standing wave. A numerical method, using boundary-fitted 
coordinates and multigrid methods to solve the Navier-Stokes equations in primitive 
variables, is developed to treat two-dimensional free-surface flows. A similar numerical 
technique is applied to the linearized three-dimensional perturbation equations to treat 
the onset of secondary flows. Experimental measurements have been obtained using 
light sheet techniques to visualize the secondary flow near the free surface. Photographs 
of streak lines were taken and compared to the numerical calculations. It has been 
shown that the solution of the linearized equations contains most of the important 
features of the nonlinear secondary flows at Reynolds number higher than the critical 
value. The experimental results also show that the numerical method predicts well the 
onset of instability in terms of the critical wavenumber and Reynolds number. 

1. Introduction 
Free-surface problems, sometimes referred to as moving boundary problems, have 

long received academic attention and industrial interest. The free-surface can be an 
interface between two fluids with difference in density, or an interface between solid 
and liquid in the process of melting or solidification, etc. Free-surface problems 
encompass a wide range of engineering interest and application, including two-phase 
flows, coating and crystal growth processes, lubrication of bearings, electrochemical 
machining, and free-surface waves in viscous flows. 

The free-surface problem can be mathematically modelled as an initial boundary 
value problem. However, unlike prescribed domain problems, the main difficulty in 
solving the free-surface problem arises from the fact that the free-surface location and 
shape must be included as unknowns in the solution procedure. From the 
hydrodynamic point of view, a complete formulation of the moving free surface 
involves the proper handling of two important effects: the surface tension and the 
viscous stress in both the tangential and normal directions on the free surface. Both 
effects involve the calculation of the orientation and shape of the free surfaces. 

t Present address : Xerox Corporation, Webster Research Center, Marking Physics Laboratory, 
800 Phillips Road, 01 14-23D, Webster, NY 14580, USA. 
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Furthermore, free-surface flows can often be hydrodynamically and thermally unstable. 
Well known examples include the Rayleigh-Benard (thermal) instability in a horizontal 
layer of fluid heated from below, and the Kelvin-Helmholtz (hydrodynamic) instability 
in a heterogeneous fluid in which different layers are in relative motion. The principle 
of the exchange of stabilities (Chandrasekhar 1981) is valid for these two instabilities 
as well as for some Taylor-Couette flows (Taylor 1923). That is, at the onset of 
instability the two-dimensional flow field perturbed by small disturbances will evolve 
into three-dimensional stationary motions different from the original steady state. 
These stationary flows have fixed mode shape and are time independent (no periodic 
motion in time). To make the analysis of any two-dimensional free-surface flow 
complete, the three-dimensional flow instability must be considered. 

In this paper we shall present both a numerical calculation and experimental results. 
We have performed flow visualization by streak photography, as well as other 
measurements, of a two-dimensional viscous incompressible free-surface flow. It is 
driven by an immersed rotating cylinder in a long rectangular trough. This study 
includes the solution of two-dimensional steady-state flows (the basic flows) and the 
calculation of the onset of the secondary flows. At sufficiently high Reynolds number 
the secondary flows gives rise to distinct motion in the axial direction similar to Taylor 
vorticies. A special feature of these secondary flows is the periodic spatial variation of 
free-surface shape similar to a standing wave in the axial direction. We call these 
secondary flows free-surface Taylor vortex flows. 

To calculate the basic flows, we devise a general finite-difference algorithm. Using 
boundary-fitted coordinates, the full Navier-Stokes equations and the Poisson 
equation for pressure are discretized on a non-staggered grid. The computation is 
therefore performed on the fixed square grid regardless of the shape and the movement 
of the physical boundaries. The primitive variables, velocities and pressure, are 
computed in a time marching scheme. The shapes of the surfaces are updated from 
their initial geometries by the kinematic condition at each time step. Along with the 
change of shape, the computational meshes are redistributed by solving a set of elliptic 
equations (Thompson, Warsi & Mastin 1982, 1985). Multigrid methods are employed 
for both the fluid and grid equations for better numerical efficiency. For the three- 
dimensional flows, linear stability analysis is performed subject to homogeneous 
boundary conditions. The advantage of linear stability analysis is that it is carried out 
in the two-dimensional domain. Linear stability analysis predicts the critical parameters 
as well as the disturbed flow fields for the onset of three-dimensional instabilities. 
Unlike the conventional approaches (Taylor 1923 ; Chandrasekhar 198 1 ; Ruschak 
1981; Coyle 1984, etc.) to treat the linear system as an eigenvalue problem, we do not 
pursue the eigenvalue directly. Instead, we treat it as an initial value problem and apply 
a method similar to that used for calculating the basic flow to solve for the 
disturbances. The eigenvalues can be obtained when the neutral stability points are 
numerically determined. To simulate the secondary flows, at least near the neutral 
stability point, the flow fields are numerically constructed by superimposing the 
disturbances (the solutions of the linearized Navier-Stokes equations of disturbances) 
onto the basic flows. The secondary flows are then approximated and visualized by 
numerically computed trajectories. 

The numerical results are verified experimentally. Free-surface shapes can be easily 
measured and compared with the calculations. Also, the critical parameters, i.e. the 
critical Reynolds number, Re,,, and the wavenumber,.f,,, are measured at the onset of 
the instability. Flow visualization has been performed using light sheet and streak 
photography techniques. The experimental fluid in use is a clear silicon-based oil, Dow 
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Corning 200 fluid. A 12 mW helium-neon laser is used as a concentrated light source 
to illuminate the suspended scattering particles, which are Kalliroscope flakes (Matisse 
& Gorman 1984). Photographs are taken for flows with Reynolds number in the range 
of 1.1 Recr to 1.2 Recr. 

The formulation of equations and numerical methods will only be summarized 
briefly. For a detailed description, see Wang (1990). 

2. Mathematical modelling 
2.1. Grid generation 

The grid is numerically generated by a set of elliptic partial differential equations 
according to Thompson et al. (1985): 

“ ~ 5 5 -  2Pxt7 + yx7,, = - JYPx, + ex,), 

~ Y ~ - ~ P Y , , + Y Y , ,  = - J Y P Y ~ +  QYJ ,  

where a: =x;+y;, p =  xtx,+ycy,, y=x;+y; ,  J =  XtYs-X,Yf, (2.1) 

with the forcing functions of P and Q to control the grid spacing. They are 

P(L 7) = - c a, sgn (t - ‘5) exp { - ci 15 - 5il> 

Q(L 7) = - C et sgn (3 - 7,) exp -.L IT - ail> 

- c bj sgn (t - tj) exp { - dj K6 - + (a - ? l j ) ” ~ > ,  

- c gj sgn (7 - aj)  exp { - hj K5 - 5 i Y  + (a - aj>”9 ; 

a, and c, control the extent of attraction of the [-line toward the &-line, while bj and 
dj control the extent of attraction of the &line toward the point (5, aj), and the effect 
of ei,fi,  gj and hi on ?-lines is similar. 

The elliptic grid generation scheme was chosen because of its flexibility in providing 
adaptive grid control, which is essential in treating the free surface. Some multigrid 
routines have been developed to treat elliptic equations very efficiently (Hackbusch & 
Trottenberg 1981). 

2.2. Governing equations and boundary conditions of the basic flows 
A two-dimensional Newtonian incompressible fluid with homogeneous material 
properties under a gravity field can be modelled by the following non-dimensional 
continuity and Navier-Stokes equations (u, and v1 represent the velocity components 
in the Cartesian coordinates, p ,  is the pressure) : 

-+A= aul av  0, 
ax ay 

Dt  Re 

DO1 1 2  1 
- = -pl +-v 0,-- 
Dt y Re Fd ’ 
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The pressure equation can be derived from the divergence of the momentum 
equations, where the viscous term vanishes due to the incompressibility condition : 

The governing parameters Re (Reynolds number), Fd (Froude number) are (where 
p, p, g, U,,, Lo are density, viscosity, gravity, characteristic velocity and length 
respectively : 

The boundary conditions for the pressure equation (2.4) are: 
(i) on the rigid surface, the pressure gradients, obtained directly from the 

Navier-Stokes equations, are specified: 

(2.5a, b)  

where the vorticity w is 
av, a' 
ax ay 

&) =--1. 

(ii) on the free surface, the normal stress condition is applied; that is (neglecting the 
viscous stress of air because of its low viscosity) using the Einstein summation notation 
where repeated subscripts are summed, 

1 
p1 = Par?rs+zninj T,,+ W e  ( 2 . 5 ~ )  

where the Webber number, We,  and the radius of curvature, R,, are given by 

cr (1 + y y . 5  
W e  = ____ 

p q L o '  Rs= Y x x  

Patm, cr and T,, are the atmospheric pressure, the coefficient of surface tension and the 
viscous stress tensor; ni represent the unit vectors in the direction normal to the free 
surface. 

For the momentum equations (2.2)-(2.3), the boundary conditions are : 
(i) no slip on the rigid surface, i.e. 

( 2 . 6 ~ )  

(ii) No shear stress on the free surface, which is the tangential stress condition 

tinj Ti j  = 0. (2.6b) 

Here ti is the unit vector in the direction tangent to the free surface. Since (2.2)-(2.3) 
are elliptic equations, one more boundary condition is required. In this work, the 
continuity equation is enforced as Neumann-type boundary condition on free surfaces : 

'1 = ' su r face ,  V l  = V s u r f a c e ;  

(again, neglecting the viscous stress of air): 

( 2 . 6 ~ )  
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2.3. Secondary flows - linear stability analysis 

Perturb the basic flow with an infinitesimal disturbance (u’, v‘, w’, p‘, h’), and let the 
perturbed state be given as 

U = u1 + u’ = u, + u(x, y ,  t )  e-‘f”, ( 2 . 7 ~ )  
V = u ,  + u’ = v, + v(x, y ,  t )  e&f2, (2.7b) 

W = w‘ = w(x, y, t )  ecif2, ( 2 . 7 ~ )  

P = p1 +p’ = p1 +p(x, y ,  t )  e-’f2, (2 .7d)  
H = h, + h’ = IZ, + h(x, y ,  t )  ecifz, (2.7e) 

where h, is the free surface height of the basic flow and f is the non-dimensional 
wavenumber (2nL,/wavelengt h). Substitute (2.7) into (2.2)-( 2.4), and linearize the 
equations for a small disturbance; then 

where 

( 2 . 8 ~ )  

(2.8 b)  

(2.8 c) 

(2.8 d )  

(2.8e) 

The corresponding boundary conditions can be derived by perturbing (2.5)-(2.6). 
All the governing equations and boundary conditions for the basic flows and the 
perturbations are transformed into boundary-fitted coordinates as shown below. 

2.4. Transformation 

Transforming the fluid governing equations and boundary conditions to the (t, 7)- 
plane yields the following system of equations: 

(i) The busicpows (u,, u,, PI, h,) where (Yl = p 1  + y / F d )  
The momentum equations are 

( 2 . 9 ~ )  

(2.9 b)  

with boundary conditions : 

( 2 . 9 ~ )  
on the rigid surface 

on the free surface ( tz ,  t,, n,, and nu represent the Cartesian components of the 
tangential and normal unit vectors of the free surface) 

(Y,~l-x,v,)5+(x5~l-Y5ul),  = 0, (2 .9d)  

u1 = Usurface ,  v1 = v s u r f a e e ;  

(2.9e) 
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(2.10~)  

with boundary conditions : 
on the rigid surface 

(2.10b) 

(2.104 

DV, DU, 1 awl 

DU, DV, 1 awl 

(a;%) = x V T - y  ---? dt Re 07 along6 = constant, 

= y --xg-+-- along7 = constant; [yi2],,, dt dt Re 

(5) 

on the free surface 

P1 = Pa,,+- n z A + n , n u  -+- + n 2 - - 1  +We - +- (2.10d) 
Re '{ ax (2 2) ut} (3 ;d' 

where the vorticity, wl, and the curvature of the free surface, R,, are 

Finally, the height of the free surface, h, = y(x, t) can 
kinematic condition applied on the free surface, 

ah1 ah1 
at  ax 
- = vl-ul- 

(2.10e) 

be determined from the 

(2.1 1) 

(ii) The disturbances (u, v, w, p ,  h) 

condition, (2.10)-(2.11). Therefore, 
The disturbance of the surface shape can be determined by perturbing the kinematic 

ah ah, ah 
- = v-u--ul--. 
at  ax ax 

(2.12) 

In (2.8), replace the disturbance w by iw. Therefore, a 90" phase difference, between 
the velocity disturbance in the z-direction and the other disturbances, is introduced. 
The system becomes 

~u ap 1 au, au, 
-- - --+-(v2u-yu)-u--?l-, 
Dt ax Re ax ay 

DV ap 1 av  av 
- = - - + + ( ( V 2 v - f 2 V ) - u U 1 - v 1  
Dt ay Re ax a y '  

~ = f p  + - (V2W -f"). 
Dw 1 
Dt Re 

(2.1 3 a) 

(2.13h) 

(2.13~) 

The velocity disturbances are governed by the above equations with boundary 
conditions as follows : 
on a rigid surface they are homogeneous boundary conditions : 

= y = w =  0 .  (2.13 d )  
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on a free surface 

w=- -+- 
;I(:: :;I> 
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(2.13e) 

2t t --- +(&ti)  -+- 
y (a, ay ax au) (i; ::) 

where t, and are the Cartesian components of unit tangential vector, ti. 
The pressure disturbance is determined by 

where 
,.. au av 
D = -+-+fw, ax ay 

with boundary conditions (in this study the free surface is taken to be on a constant 
7 line): 
on the free surface 

where 

(2.14b) 

on the rigid surface 
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where 

It should be noted that the Laplacian operator, V2, and the total time derivative, 
D/Dt, in (2.8e) are two-dimensional. Therefore, the D/Dr in (2.12t(2.14) are taken 
along the same characteristics as the basic flow. 

3. Numerical schemes 
A finite-difference method, with truncation error of second order in space and first 

order in time, was developed for the solution of the system defined in (2.9)-(2.14). It 
can be characterized as follows : 

(i) The unknown primitive variables, (ul, vl, p l ,  hl), for two-dimensional basic flows 
and their corresponding three-dimensional disturbances, (u’, zi’, w’, p‘ ,  h’), are 
computed on a non-staggered grid with specified initial conditions in a time-marching 
process. 

(ii) This is an implicit scheme except that the shape of the free surface is updated 
explicitly. That is, all the other difference approximations and function values, for both 
the governing equations and boundary conditions, are evaluated implicitly at the most 
recent time level. The inertial terms are calculated by the Eulerian-Lagrangian method 
(Casulli 1986, 1987). It should be noted that since all the transformed equations are 
solved in the curvilinear coordinates (t, v), and the physical boundaries change before 
any steady state is reached, the curvilinear coordinate system itself is time varying. 
Therefore, applying the Eulerian-Lagrangian method to solve the basic flows in such 
systems requires extra treatment, which is described in Appendix A. Such treatment, 
however, is not required for the calculation of disturbances since these calculations are 
carried out on the fixed grid derived from the steady-state solution of the basic flow. 

To be more specific about the numerical procedure, the following steps were applied. 
For the basic flow, after all the flow variables have converged from solving (2.9)-(2.10) 
iteratively at the present time level, the free surfaces are moved according to the 
kinematic condition, (2.11). Then the mesh is updated by solving (2.1) from the 
updated boundaries to complete the computational cycle for one time step. A similar 
procedure is followed to treat (2.12)-(2.14), except that two more parameters are 
calculated at each time step for the purpose of determination of the flow stability. 
They are 

the summation is taken over the whole computational domain. They will be referred 
to as total disturbance kinetic energy ( K )  and amplification factor (G). If the flow system 
is unstable this will be reflected by the values of the disturbance kinetic energy, i.e. K 
grows without bound. Also, it has been observed in this study that the amplification 
factor grows or decays asymptotically in time towards constants, if the eigenvalues of 
the homogeneous system are real. If the asymptotic value of G is less than 1 the system 
is stable. 

(iii) A conservation discretization of the differential equations was adopted. With 
the use of the conservative forms, the discretized pressure equation could satisfy its 
compatibility criterion automatically if a consistent procedure for discretization is 
followed. Failing to satisfy the compatibility criterion will result in difficulties in 
obtaining convergent solutions for the Poisson equation with Neumann boundary 
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Numerical results 

Previous 
studies 

(Sparrow Present method 
et al. 1964; 

Walowit Grid 1 Grid 2 Grid 3 
Critical parameters et al.1964) (197 x 49) (99 x 25) (65 x 19) 

Reynolds number (Re,,) 68.18-68.19 68.5 70.8 72.5 
Wavenumber (f,,) 3.16 3.16 3.17 3.20 
(,f = 2nRJwavelength) 

TABLE 1. Concentric cylinder flow (RJR, = 2) 

conditions. A conventional remedy for this problem is to modify either the boundary 
conditions or the source terms of the pressure equation to fit the criterion (Biringen & 
Cook 1988; Ghia, Hankey & Hodge 1977). A preferred procedure, proposed by 
Abdallah (1987) for cavity flows in Cartesian coordinates, was implemented in the 
present method (see Appendix B). Abdallah pointed out that the compatibility 
condition is not satisfied mostly because of the inconsistency of discretization between 
the Poisson equation and its boundary conditions. This scheme is further extended for 
general curvilinear coordinates (Wang 1990) in conjunction with the utilization of 
Cartesian velocity components, the conservative transformation and the Eulerian- 
Lagrangian method. A similar approach has been developed by Mansour & Hamed 
(1990). They applied the scheme to orthogonal curvilinear systems using contravariant 
velocity components and an explicit difference scheme. 

(iv) A corrective scheme by Hirt & Harlow (1967) for incompressibility is used. 
Since continuity is not enforced directly in the present numerical method, proper 
correction of pressure is the only method for assuring incompressibility. To ensure that 
the solution method minimizes dilation (D = u, + v,), the dilation at time n + 1 is taken 
as zero in (2.100). The stability analysis is treated in a similar fashion in (2.13a). By 
doing this, the deviation from incompressibility can be suppressed during the transient 
solution and is minimal when steady-state solutions are obtained. 

(v) All the difference equations, including the grid equation, are solved by 
Gauss-Seidel iteration using a V-cycle full approximation scheme multigrid method 
(Hackbusch & Trottenberg 1992). We employed three levels of grid with mesh sizes 
M x  N ,  2 M x  2N and 4M x 4N.  

Test case: Taylor vorticies in the annulus of two concentric cylinders 
To test the performance of our initial-value code in solving for two-dimensional 

basic flows and for three-dimensional disturbances, we first applied it to investigate the 
Taylor-Couette flows in the annulus of concentric cylinders with radii ratio (RJR,) of 
2 :  1 .  The flow is driven by the inner cylinder rotating at constant speed. The general 
numerical procedure of determining the onset of instabilities is discussed here using the 
Taylor-Couette flow as an example. We started the calculation on a coarse grid with 
node numbers in the circumferential and radial direction of 65 by 19 (grid 3 ,  see table 
2). For testing purposes, we did not assume axisymmetry in modelling for either the 
basic flows or the disturbances. Like the time-marching process used in calculating the 
two-dimensional basic flows, the three-dimensional disturbances were computed from 
their initial conditions. Hence, after the solutions of the basic flows are obtained, any 
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FIGURE 1. The evolution in time of velocity disturbance, Ui, corresponding to different initial 
conditions: (a) U;, = a(r2+br+c) ,  (b) V;, = a(r-R,)(r-R,)(r2+hr+c), (c) U i  = asin[2n(r-Rl)/ 
(R, - RJI. 
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FIGURE 2. (a) Disturbance kinetic energy, (b) Enlargement. Curve A, Re = 75.0, wavenumber = 3.2; 
B, Re = 72.5, wavenumber 3.0; C, Re = 12.5, wavenumber = 3.2; D, Re = 72.5, wavenumber = 3.6; 
E, Re = 70.0, wavenumber = 3.2. 

initial disturbance which satisfies the conservation of mass, namely, 0” = 0, can be used 
as an initial condition for the equations of perturbation. For example, let initial radial 
disturbances be zero ; three different disturbances of circumferential velocity, Ui, with 
specific shape functions are chosen : (i) Ui = a(rz + br + c), (ii) 

Uh = a(r - R,) ( r  - R2) (? + br + c), 

and (iii) Ui = a sin [2x(r - R,)/(R, - Rl)]. Constants a, b and c are arbitrarily chosen so 
that 0” = 0 and there are no disturbances at boundaries. A list of our numerically 
predictedf,, and Recr (based on the inner radius, R,, and its velocity, U,) and those 
from previous studies by other researchers is shown in table 1. Also shown in the table 
are results using finer grids. With higher resolution (up to 197 x 49), the difference in 
Recr is within 0.5 % and an even better agreement for f,, is achieved. 
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FIGURE 3. Averaged amplification factor. Wavenumber 3.2. Curve A, Re = 75.0, G = 1.00224; B, 
Re = 72.5, G = 1.000962; C, Re = 70.0, G = 0.997726. 

H A V Re Fd We 
(in.) (ff/ W )  (r.p.m.1 c. VD/2Pu) (2 V 2 / D g )  ( 2 g / p V 2 D )  

Case 1 1.728 0.864 50 17.17 0.0518 0.13274 
Case 2 1.864 0.932 200 68.69 0.8280 0.00830 
Case 3 2.0 1 .o 420 144.248 3.3123 0.00188 
Case 4 2.0714 1.0357 420 144.248 3.3123 0.00188 

TABLE 2. The parameters of free-surface flows (see figure 4 for definitions of H ,  W,  D and V )  

At neutral stability points, the disturbances eventually evolve to fixed profiles as 
shown in figure 1 (a-c). Each plot represents the development of the circumferential 
velocity disturbance in time corresponding to different initial conditions (ik(iii) but the 
same neutrally stable values of Re and f .  Owing to the nature of homogeneous 
problems, the solutions of the eigenproblems, i.e. the eigenfunctions, should have the 
same mode regardless of initial conditions with differences only in signs and amplitude. 
Curve C in figure 2(a, b) represents one of those eigenpoints. It can also be seen in 
figure 3 that the asymptotic value of the average amplification factor for the case of 
( R e , f )  = (72.5, 3.2) is the closest to 1 compared to other trial cases solved on the same 
grid (65 x 19). Among all the eigenpoints, the one with the smallest Re is determined 
to be the critical point, the physical onset of instability. The non-dimensional time 
shown in figures 2 and 3 is scaled by R J U .  That is, one unit of non-dimensional time 
includes 1/(2.n) of a cycle of revolution. All the numerical stability analyses were 
performed with a numerical time step of 1/72 of a cycle in the total time period of four 
revolutions. It normally took 9-12 minutes on a SUN/Sparc-2 workstation to 
complete one task. 

4. Experimental apparatus and procedure 
Fluid flow experiments were conducted using a 11.5 in. long rectangular trough. The 

flows within the trough are driven by an internal rotating cylinder. The schematic of 
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es 

Half-cylindrical lens / i\\ f 

FIGURE 4. Schematic of the experimental set-up. Dimensions in inches. 

FIGURE 5. Initial condition for case 1: (a) A = 0.864, (b) e = 2.15R,, R, = 3.163R1. 

the experimental set-up is shown in figure 4. During the experiments, attention was 
focused on three aspects: (i) to measure the free surface shape at steady state, (ii) to 
determine the critical parameters (i.e. Reer and f,,), and (iii) to record the secondary 
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FIGURE 6(a-4. For caption see facing page. 

flows from the top of the free surface by streak photography at an Re value higher than 

The experimental apparatus is mounted on an optical table. The trough and the 
inner cylinder are made of a transparent material, Lucite. The rotation of the inner 
cylinder is controlled by a servo motor and the speed is measured by a digital 
tachometer (Shimpo, DT-205B) with accuracy to within one r.p.m. (in the range of 
6-5000 r.p.m.). The experimental fluid is a clear silicon-based oil, Dow Corning 200 
fluid. It has a surface tension coefficient of 22.08 dynes cm-l and a specific gravity of 
0.96 at 26 "C. Since the viscosity is rather temperature sensitive (see Appendix C), the 
temperature was carefully monitored and maintained at 26 "C to ensure a viscosity of 
100 CP (k0.5 %) throughout the experiment. For the flow visualization, suspended 
Kalliroscope flakes were used as scattering particles. The particles are made from 
guanine (density 1.62 g ~ m - ~ )  of size 6 x 30 x 0.07 pm. Owing to their plate-like 
structure, the flakes can align themselves with the fluid flow; they have a refraction 
index of 1.85 which provides a good photographic contrast even in a very dilute 
concentration. 

The height of the free surface is measured by a set of micrometers which can slide 

Re,,. 
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FIGURE 6. Transient solutions of case 1 : (a) computational grid at t (dimensionless) = 0.2; (b) 
streamlines at t = 0.2, (c) t = 0.5, ( d )  t = 1.0, (e) t = 1.5, v ,̂ t = 2.0, (g) t = 2.5, and (h)  steady 
state. 

along three perpendicular axes, x, y and z ,  with a pin attached at the bottom. By 
moving the micrometers across the trough in either the x- or z-direction (parallel to the 
table) while keeping the pin head barely in contact with the fluid, the surface shape 
in (x, y ,  z )  can be measured. 

A 12 mW helium-neon laser is used as light source for two purposes: to illuminate 
the scattering particles for flow visualization; and to help distinguish the onset of 
instability, which is determined by the appearance of top surface deformation. A thin 
sheet of laser light (approximate 1.5 mm thick, and several inches wide), expanded 
from a laser beam by a negative plano-cylindrical glass lens, is transmitted through the 
fluid from the bottom of the trough as shown in figure 4. The projected light sheet 
remains straight at the image display as long as the flow remains two-dimensional. Tiny 
free-surface deformation caused by axial motion can clearly lead to a wavy distortion 
of the laser sheet. It is sensitive enough to allow the determination of onset of 
instability to within 5 r.p.m. The critical parameters are obtained by taking the average 
of ten measurements. 
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FIGURE 7. Steady-state solutions: (a) case 2 ,  (b) case 3, ( c )  case 4 and (d )  grid for case 3. 

5. Results 
In this section, a series of numerical simulations and experimental results is 

presented. Listed in table 2 are the four fluid flows, differentiated by the initial and 
boundary conditions. 

The basic flows for all four cases were calculated in the first place and the stability 
for case 4 was further investigated. The results have been compared with experimental 
data for the two-dimensional free-surface shapes and Re,,, f,, of the secondary flow. 
The secondary flow, in terms of the wavy surface and the streak lines along the top free 
surface, has been numerically simulated to compare with photographs taken from the 
experiments. The characteristic length and speed were chosen to be +D and V for the 
calculations. 

5.1. The basicflows 
In case 1, with a 0.864 aspect ratio (H/  W ) ,  the initial level of the free surface could 
barely cover the inner roll as shown in figure 5 (a).  For simplicity, without changing the 
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FIGURE 8. Distribution of normal viscous stress along the top free surfaces: (a) case 1, 
(b) case 2, (c) case 3, (d) case 4. 

total amount of fluid, the initial shape of the free surface is assumed to be part of a 
circle as shown in figure 5 (b). A 120 x 16 grid is used. For a higher numerical resolution 
on the free surface, half of the grid lines, i.e. 60 out of 120, are distributed along the 
free surface. The transient development, driven by the rotation of the inner cylinder 
under gravity, is shown in figure 6 by streamlines. Initially, 0 < t < 0.2 ( t  = d/21/, is 
dimensionless), the flow is dominated by gravity. It can be clearly seen that the fluid 
over the middle part of the free surface is moving downward to the sides due to gravity. 
At 0.2 < t < 1.0, as the viscous drag increases and the internal pressure builds up, the 
motion of the surface is quickly affected by the rotation and a height difference between 
the left (upstream) and the right surface (downstream) is established. Eventually, a 
separating streamline appears and reversed eddies form in each corner. A constant 
increment in stream function is chosen for all the streamline plots in figure 6. 

The steady-state solutions for the other three cases are shown in figure 7, also by a 
stream-function distribution. To better show the flow patterns in the corners, the 
values of stream lines are not equally spaced (much smaller increments near the 

\ 
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FIGURE 9. Free-surface shapes at steady states of case 3 for fluids with different viscosities: 
A, 100cP;B, 5OcP;C,25cP. 

corners). Note that since the Weber numbers of these three cases are smaller than case 
1, the appearance of larger curvatures on the top surfaces are expected. Indeed, in cases 
2 and 3 a pronounced local depression on the free surface has been observed in 
experiments and successfully predicted by calculations (see figure 10 also). However, in 
case 4, with further increases in the amount of fluid, no noticeable local depresslon can 
be seen. This can be explained by figure 8 where the distribution of normal viscous 
stresses along the free surfaces is plotted. In cases 2 and 3, the normal viscous stress 
increases rapidly to its peak value and vanishes. Surface tension will not be enough to 
counter the surging normal viscous stress without forming large curvatures. In case 4, 
the prominent spike of the normal viscous stress ceases to exist, so the surface 
depression no longer appears. Further increases in the rotational speeds in cases 2 or 
3 would result in air entrainment through the surface depression. To further investigate 
the normal viscous stress effect in case 3, we changed the viscosity while maintaining 
the same rotational speed. In figure 9, the calculated surface shapes for three different 
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FIGURE 10. Free-surface shapes at steady states: comparison of numerical (-) and 

experimental ( x ) results. 

values of viscosity are shown. Curve (a) corresponds to case 3 (1OOcP) described 
above. Curves (b) and (c) represent the less viscous fluids, 50 and 25 CP respectively. 
The outcome of reducing viscosity is a decreases in curvature of the local depression. 
To better calculate the fluid flows of cases 2 4 ,  a finer grid (196 x 25) was adopted with 
the use of an adaptive grid; That is the grid lines are clustered into the corners and near 
the free surface to improve the resolution in those areas. One example of grid clustering 
can be seen in figure 7 ( d ) .  It has been found that the clustering is critical for cases 2 
and 3 in seeking accurate solutions, due to the substantial curvature change. 

Displayed in figure 10 are the numerical calculations and the measured free-surface 
shapes, taken at the middle of the trough (for smaller end effects). The experimental 
errors are estimated to be f 0.015 in. in the y-direction (normal to the free surface), and 
f0.004 in. in the x-direction. The higher error in the normal direction is due to the 
capillary effect, which occurs when the micrometer pin moves vertically in order to 
contact the free surface. Excellent agreement was obtained for all four cases, except 
near the rigid walls due to the capillary effect which is not considered in the model. For 
simplicity, the angles of attachment were assumed to be 90" in the calculations. 

5.2. The secondary f low: free-surface Taylor vorticies 
The flow instability of case 4 was investigated in a fashion similar to the previous study 
of concentric Taylor-Couette flow. The only difference is that the free-surface shape 
must be perturbed along with the other flow variables according to (2.12) and solved 
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FIGURE 11. Stability map (experimental errors are estimated to be f 2 % in wavenumber, and & 5 
r.p.m. in rotational speed.) A, Numerically determined neutral stability points. 

Critical Critical 

number (r.p.m.) wavenumber number (r.p.m.) wavenumber 

1 438 5.12 6 432 5.51 
2 445 5.58 1 434 5.58 
3 443 5.51 8 440 5.38 
4 439 5.65 9 436 5.19 
5 431 5.65 10 44 1 5.51 

Measurement speed Critical Measurement speed Critical 

Critical Critical 
speed wavenumber 

(r.p.m.) (f,J 
Average of 438.5 5.59 
measurements 

simulation 
Numerical 441 5.60 

TABLE 3. Experimental us. numerical results 
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FIGURE 12. (a) Axial velocity disturbance, w. (h)  Normalized local Taylor number, T / T .  T = (Ud/v)' 
(d /R)  ( T , I / ( ~  +T,I)), 7 = R/(R+d).  U,  d R, v are the local velocity, gap width, inner radius and 
kinematic viscosity. T is the local Taylor number of free-surface Taylor flow. T is the corresponding 
critical Taylor number (DiPrima & Swinney 1981) for concentric Taylor flows with same value of T,I. 
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0 

FIGURE 13. Deformed free surface. 

for as an unknown. The computational domain in use is the fixed geometry obtained 
from the precalculated steady-state solution of the basic flow. The disturbance of the 
free-surface shape affects the secondary flow through the boundary conditions, 
(2.135 g )  and (2.14b). The disturbed viscous stress and pressure are hence influenced 
by the perturbation of the free-surface shape, and vice versa. 

In order to perform the stability analysis, a number of precalculated basic flows are 
required. The computations have been done in the speed range of 420 to 500 r.p.m. 
Figure 11 shows the stability map derived from the numerical calculation. 

The critical point was determined, among other neutral stability points, to be 
(Re, A )  = (447 r.p.m., 5.60). As shown in table 3, they match well with the experimental 
data, which are averages of ten sets of experimental results. It should be stated that 
since the wavenumber (or the wavelength) at a higher rotation speed does not vary 
from that at the onset of instability, the measurements of wavenumbers are actually 
taken around 500 r.p.m. The experiments show that the end effect seems to destabilize 
the flows since the secondary flow always begins at the ends. Therefore, the calculated 
critical speed ought to be higher than the measured one. 

To visualize the perturbed flow field, a contour plot of w, the normal mode of axial 
velocity disturbance, is drawn in the (x,y) domain. Figure 12(a) shows that the fluid 
in each of the converging regions has developed a prominent secondary flow. The 
largest disturbance is not near the free surface but is in the upper right corner where 
the circumferential flow must change most rapidly. It also has been observed from the 
calculations that the two- and three-dimensional solutions are not much affected by the 
variation in surface tension and certainly not as much as they are by the Reynolds 
number. Therefore, we believe that, in contrast to the Kelvin-Helmholtz instability, the 
disturbance of the free surface is not a dominant effect as regards flow instability. 
Instead, this secondary flow, even with a free surface, is similar to the Taylor vortices 
between two concentric cylinders where the instability is determined by flow inertial. 
The concept of the present instability being inertia driven is made more apparent by 
examining the local Taylor number distribution, as shown in figure 12(b). By 
superimposing the three-dimensional solutions onto the two-dimensional ones, the 
secondary flows can be approximated. It can be seen that the present instability occurs 
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FIGURE 14. Free surface of the secondary flow for case 3 at V = 500 r.p.m. 

when the maximum local Taylor number (maximum T / C  = 6.43) is supercritical. In 
addition, the largest perturbation occurs in the area of maximum local Taylor number. 

Similarly, superimposing the disturbance of the free surface shape at the onset of 
instability onto the basic shape, the deformed surface due to the secondary flow can be 
approximated. In figure 13, the deformed surface with four cells is plotted. The 
photographs of the real flows are shown in figure 14. 

It should be noted that based on the linear stability analysis, the solution variables, 
(u, v, w ,  h) ,  of the perturbation equations are the normal modes of the amplitudes of 
disturbances, (u’, v’, w’, h’). In superimposing on two-dimensional solutions, the 
amplitude of disturbances is chosen in such a way that, for example, it can provide a 
trajectory plot close enough to the experimental result obtained at supercritical Re as 

7-2 
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FIGURE 15. (a) Simulation, (b)  photograph of streak lines near the free surface. 

shown in figure 15. It is obvious that to simulate the supercritical flows in this way 
without real three-dimensional computation is only a qualitative approximation. It 
becomes even less informative as the flow becomes more supercritical. Deviation is 
expected not only because the photo was taken at the supercritical state but also 
because the flow trajectories were calculated exactly on the free surface, while the 
photographic streak lines involves trajectories some distance below the surface, 
especially in the higher (in j )  side of the downstream region where a sink-like structure 
under the free surface tends to be displaced toward the right wall. In general, however, 
figure 15 shows that by properly choosing the amplitude the important feature of the 
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supercritical free-surface Taylor flow at 500 r.p.m. can be revealed by the linear 
analysis conducted at neutrally stable point at 447 r.p.m. 

A closer look at the secondary flow from top free surface shows that it is 
characterized by a cellular pattern with the highest speed in the centre, directly over the 
rotating cylinder. There appears to be an upwelling (source-like) of fluid on the left in 
the centre of each cell. A portion of the flow travels back toward the left wall while the 
rest follows in the direction of the rotation of the internal cylinder toward the right. 
Two surface eddies, rotating in opposite directions, are formed on the right side of the 
cell where the trajectories all converge, resulting in a spiralling sink-like behaviour. The 
pair of eddies in each cell jointly form a tongue-shaped feature near the middle of the 
cell. At the upstream (left) side, separating streamlines together with the surface 
stagnation points are seen in the trajectories dividing the flow issuing from the surface 
source travelling to the left wall from that travelling to the eddies. 

6.  Summary 
Free-surface Taylor vortex flow is studied both numerically and experimentally. This 

flow, similar to Taylor-Couette flows between two cylinders, bifurcates from two- 
dimensional flow into a three-dimensional flow pattern as the Reynolds number is 
increased beyond the critical value. The strikingly periodic variation of the free-surface 
shape makes this flow structure distinct from the usual enclosed Taylor vortex flow. 
Because of its complex but ordered flow field in both the basic and secondary flows, 
this flow structure offers an ideal case for flow visualization as well as numerical 
simulation. Four cases of basic flows with different initial and boundary conditions 
have been simulated. All the numerical results compared well with the measurements 
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of the two-dimensional surface shapes at steady state. The appearance of a local 
depression in the free surface has been explained on the basis of the large normal 
viscous stress gradients developed in the flow on the free surface. Based on one of the 
calculated basic solutions, numerical stability analysis is performed and the onset of 
free-surface Taylor vortex flow is successfully predicted in terms of the critical 
wavenumber and Reynolds number. At the neutral stability point, by superimposing 
the disturbances onto the basic flow, the secondary flow field can be approximately 
reconstructed. From flow visualization, the existence of the numerically predicted 
source-sink-like flow field near the top surface has been confirmed. Since the linearized 
equations for disturbances are solved as an initial value problem, one advantage of this 
method is its ability to treat time-varying systems for both the basic flows and the 
secondary flows. Only stationary flows, however, are involved in the present study. 

The authors would like to thank Dr Juris Privics of Xerox Webster Research 
Center/Mechanical Engineering Science Laboratory for supporting this work and 
both H. Metternich and G. Bay for their work in fabricating the experimental 
apparatus. 

Appendix A. Eulerian-Lagrangian method 
An implicit Eulerian-Lagrangian method using linear interpolation in moving- 

boundary-fitted coordinates is developed. Using (2.9 a)  for example (subscript 1 is 
removed for simplicity), splitting the inertia term by Eulerian-Lagrangian method and 
moving the unknown, u (the unknown to be solved), to the left-hand side, the equation 
becomes 

where u, is the x-component of U,, the velocity of the same fluid particle at t - At from 
the Lagrangian point of view. 

To obtain U, fluid trajectories need to be calculated. since the particles located on 
a mesh node at time t do not necessarily initiate from a node at time t-At, 
interpolation is needed. By using boundary-fitted coordinates, the process of 
interpolation is performed quite simply on a square grid compared to an irregular one. 
This is another advantage of using boundary-fitted coordinates. However, in free- 
surface problems since the grids are always changing, i.e. the same coordinates in the 
(5, 7)-domain at different time steps could represent different physical positions, extra 
attention must be paid to interpolation for U, .  

Consider a spatial-time coordinate system, figure 16, employed in a time-marching 
scheme. Two sets of grids are shown at two consecutive time steps with interval 
dt. Note that the grid has been redistributed from time t ,  -dt to time t, due to the 
movement of the boundaries. If the velocity distributions U([, 7, tl) and U([ ,y ,  t ,  - dt) 
are known, then the trajectory during time dt of an arbitrary particle, Pl for example, 
can be derived. Accordingly, U, can be obtained by interpolating from U([, 7, t, - dt). 
Let (d[, dv) be the values of displacements of Pl in the curvilinear coordinate system 
within duration dt. And correspondingly (dx,dy) are the values in Cartesian 
coordinates. The values of (dx, dy) can be approximated by 

- dx 
- - u, dt 

= v, 9 
dt 

dx = 0.5 (U + u,), dy = O.~(V+V,). 
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The relation between (dt, dq) and (dx,dy) is, by the chain rule, 

195 

where the grid speed ([,,st) can be obtained from 

86 = f ,  sx + 5, Sy + tt S t  = 0 along constant 5 curve, 

ST = yz ax + qy Sy + qt St = 0 along constant q curve, 
(A 3 4  

(A 3b) 

in which the (Sx, Sy) are the differences of the coordinate values of x and y of each grid 
node between the two grids, which have a time interval St. Choose S t  to be equal to dt, 
and combine (A 2) and (A 3) to obtain 

G = b,(dx - 8x1 + x,(&J - dY)l/J, 
dq = [ Y&SX - dx) + x,(dy - Sy)]/J .  

(A 4 4  
(A 4b) 

Once (dt, dq) are derived, (&, qL) can be determined from (A 2). Accordingly, U, can 
be interpolated from U([, q, t ,  - dt) at neighbouring nodes. In this study, linear 
interpolation was used. Notice that the above procedure should be applied iteratively 
to calculate U, and the trajectories until all the unknowns above have converged. 

Appendix B. Consistent discretization 
The difficulty of solving the pressure equation, (2.10), with just the Neumann 

boundary condition comes from the compatibility condition (divergence theorem) 
which relates the Neumann boundary condition and the source term of the Poisson 
equation for pressure. The two-dimensional form of the divergence theorem is 

where L is the complete boundary and A is the area within it. If (2.1Oa-c) (assume no 
free surface) fail to satisfy this criterion, no numerical solution can be obtained. 
Consider a singly connected region in the (5, $)-plane with (m - 1) x (n - 1) square- 
meshed grids inside. Equation (2 .10~)  is solved with boundary condition (2.10b) on 
t = 1, [ = m, and (2.10~) on q = 1, q = n. Discretize the left-hand side of (2 .10~)  using 
(2.13), then 
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And the right-hand side is 

where 2 < i < m - 1,2 < j < n - 1. The x- and y-coordinates at mid-points are derived 
by linear interpolation from neighbouring integer nodes, and all the first-order 
derivatives are calculated by central difference using points from both sizes half a mesh 
away. For example, 

~ i + 1 / 2 , j  = X ~ t + l , j  + ~ i ,  j), yi+l /z , j - l /z  = i ( ~ i + l , j  + ~ i + i , j - l  + ~ i , j - l  + ~ i , j ) ,  

( Y J t ,  j+l/Z = (Yi+l/Z.j+l/Z - Yi-l/Z,j+l/2)/At? [( Y&li, j+l/2 = [( Y[P)i , j+l-  (Y:P>,, j l / b  
In order to satisfy the compatibility criterion, boundary conditions (2. lob, c) have to 
be discretized consistently and therefore evaluated at half a mesh away from the 
boundary. Use (2.14a, b) to evaluate the left-hand side of (2.lOb, c): 
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Dow Corning 200 fluid (100 cst) 
Specific gravity: 0.964 (25 "C) 
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FIGURE 17. Viscosity US. temperature of Dow Corning 200 fluid, specific gravity 0.964 at 25 "C 
(measured by Brookfield viscometer model DV-I). 

Evaluate the first-order spatial derivatives on boundaries by the second-order forward 
or backward difference, i.e. 

It can be shown that the compatibility condition (B 1) is satisfied identically by 
summing (discrete form of integration) the above discretized terms : 

77-1 n-1 n-1 1 
C C LHs(2.10~)- C -(LHS(2.10b) I,=,-LHS(2.10b) I,=,) 
<=2 j-2 j = 2  A t  

m-1 1 

i=2 A7 
- C -(LHS(2.10c) 17=,-LHS(2.10c) I,=,) = 0, 

and 

m-1 n-1 72-1 1 
C RHs(2.10~)-  C -(RHS(2.10b) It=,-RHS(2.10b) 

i = 2  j=2  j = 2  A< 
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A similar operation can be done on multiply-connected regions with minor 
modifications. 

Appendix C. Viscosity us. temperature of Dow Corning 200 fluid 

temperature. 
Figure 17 shows how the viscosity of the fluid used in the experiments varied with 
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